Markov Chain Choice Model from Pairwise Comparisons

نویسندگان

  • Ashish Khetan
  • Sewoong Oh
چکیده

Recently, the Markov chain choice model has been introduced by Blanchet et al. to overcome the computational intractability for learning and revenue management for several modern choice models, including the mixed multinomial logit models. However, the known methods for learning the Markov models require almost all items to be offered in the learning stage, which is impractical. To address this challenge, we propose a new approach for learning the Markov chain models that only use pairwise comparisons. Thus learned Markov models provably enjoys the similar advantages of the original Markov chain choice models, such as recovering the multinomial logit model as a special case, approximation guarantees for mixed multinomial logit models, and tractable exact solutions to assortment optimization. We provide numerical simulations investigating the price we pay for the simplified learning approach, which is in the accuracy of the predicted probabilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairwise Choice Markov Chains

As datasets capturing human choices grow in richness and scale—particularly in online domains—there is an increasing need for choice models that escape traditional choice-theoretic axioms such as regularity, stochastic transitivity, and Luce’s choice axiom. In this work we introduce the Pairwise Choice Markov Chain (PCMC) model of discrete choice, an inferentially tractable model that does not ...

متن کامل

Recommendation from Intransitive Pairwise Comparisons

In this paper we propose a full Bayesian probabilistic method to learn preferences from non-transitive pairwise comparison data. Such lack of transitivity easily arises when the number of pairwise comparisons is large, and they are given sequentially without allowing for consistency check. We develop a Bayesian Mallows model able to handle such data through a latent layer of uncertainty which c...

متن کامل

Markov Chain Analogue Year Daily Rainfall Model and Pricing of Rainfall Derivatives

In this study we model the daily rainfall occurrence using Markov Chain Analogue Yearmodel (MCAYM) and the intensity or amount of daily rainfall using three different probability distributions; gamma, exponential and mixed exponential distributions. Combining the occurrence and intensity model we obtain Markov Chain Analogue Year gamma model (MCAYGM), Markov Chain Analogue Year exponentia...

متن کامل

Development of Markov Chain Grey Regression Model to Forecast the Annual Natural Gas Consumption

Accurate forecasting of annual gas consumption of the country plays an important role in energy supply strategies and policy making in this area.  Markov chain grey regression model is considered to be a superior model for analyzing and forecasting annual gas consumption.  This model Markov is a combination of the Markov chain and grey regression models. According to this model, the residual er...

متن کامل

COMPARISON ABILITY OF GA AND DP METHODS FOR OPTIMIZATION OF RELEASED WATER FROM RESERVOIR DAM BASED ON PRODUCED DIFFERENT SCENARIOS BY MARKOV CHAIN METHOD

Planning for supply water demands (drinkable and irrigation water demands) is a necessary problem. For this purpose, three subjects must be considered (optimization of water supply systems such as volume of reservoir dams, optimization of released water from reservoir and prediction of next droughts). For optimization of volume of reservoir dams, yield model is applied. Reliability of yield mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016